MLA-Net: Feature Pyramid Network with Multi-Level Local Attention for Object Detection
نویسندگان
چکیده
Feature pyramid networks and attention mechanisms are the mainstream methods to improve detection performance of many current models. However, when they learned jointly, there is a lack information association between multi-level features. Therefore, this paper proposes feature local method, dubbed as MLA-Net (Feature Pyramid Network with Multi-Level Local Attention for Object Detection), which aims establish correlation mechanism information. First, original features deformed rectified using pixel-rectification module, global semantic enhancement achieved through spatial-attention module. After that, further fused residual connection achieve fusion contextual enhance representation. Extensive ablation experiments were conducted on MS COCO (Microsoft Common Objects in Context) dataset, results demonstrate effectiveness proposed method 0.5% enhancement. An improvement 1.2% was obtained PASCAL VOC (Pattern Analysis Statistical Modelling Computational Learning, Visual Classes) reaching 81.8%, thereby, indicating that robust can compete other advanced
منابع مشابه
Template Matching based Object Detection Using HOG Feature Pyramid
The Object detection based on histogram of oriented gradients was introduced in the context of detecting humans in images [1]. Detecting human subject in the image is a difficult task due to the fact that they appear in different appearance and poses. Thus the need to come up with a feature that allows human dorm to be detected cleanly even in cluttered background under different illumination. ...
متن کاملA novel Local feature descriptor using the Mercator projection for 3D object recognition
Point cloud processing is a rapidly growing research area of computer vision. Introducing of cheap range sensors has made a great interest in the point cloud processing and 3D object recognition. 3D object recognition methods can be divided into two categories: global and local feature-based methods. Global features describe the entire model shape whereas local features encode the neighborhood ...
متن کاملLCNN: Low-level Feature Embedded CNN for Salient Object Detection
In this paper, we propose a novel deep neural network framework embedded with low-level features (LCNN) for salient object detection in complex images. We utilise the advantage of convolutional neural networks to automatically learn the high-level features that capture the structured information and semantic context in the image. In order to better adapt a CNN model into the saliency task, we r...
متن کاملFeature-Level based Video Fusion for Object Detection
Fusion of three-dimensional data from multiple sensors gained momentum, especially in applications pertaining to surveillance, when promising results were obtained in moving object detection. Several approaches to video fusion of visual and infrared data have been proposed in recent literature. They mainly comprise of pixel based methodologies. Surveillance is a major application of video fusio...
متن کاملMulti-scale Cortical Keypoint Representation for Attention and Object Detection
Keypoints (junctions) provide important information for focus-of-attention (FoA) and object categorization/recognition. In this paper we analyze the multi-scale keypoint representation, obtained by applying a linear and quasi-continuous scaling to an optimized model of cortical end-stopped cells, in order to study its importance and possibilities for developing a visual, cortical architecture. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics
سال: 2022
ISSN: ['2227-7390']
DOI: https://doi.org/10.3390/math10244789